Трансформаторы импульсных источников. Космическая технология

"Начудили" китайцы в блоке питания тюнера TECHNOSAT 4050C, который вышел из строя. С завода стояла микросхема с маркировкой 5MO2659R, но на самом деле - ЭТО НЕВЕРНАЯ МАРКИРОВКА. Какая это микросхема - не известно, стоящая там явно не подходит в данный блок питания: если её впаять, то получается КЗ по 350 V.

На плате этого блока питания фигурирует надпись VIDER22A, на которую я сразу не обратил внимания. Эта микросхема часто применяется в БП для DVD. Когда я заметил эту надпись, то подумал, что всё решено. Но не тут-то было. Чтоб заработал данный БП пришлось немного попотеть. А именно: я установил отсутствовавшие элементы - резисторы R14:4,7К, R3:22Ом, диод D6FR207, сделал один разрыв в печатном монтаже, так чтоб R14 одной стороной соединялся только с оптопарой, а другой его вывод - с катодом диода D6 и с плюсовым выводом конденсатора С2, и с четвёртым выводом микросхемы U1 (см. фото).

И пришлось не разбирая ТПИ (трансформатор), домотать отсутствующую обмотку проводом ПЭЛ 0,16 четырнадцать витков (см. рис. ниже):

Вид ТПИ снизу

Начало подпаиваем к пустому выводу 1, который идёт на R3 (22Ом), а конец - так же на пустой вывод, который идёт на минус конденсатора С1 (47х400V).

Добавленную обмотку пропитать клеем, например, "Момент". Затем нужно впаять микросхему VIPER22A. Включаем, пользуемся.

Описана принципиальная схема самодельного импульсного блока питания с выходным напряжением +14В и током, достаточным для питания шуруповерта.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент,но есть и существенный недостаток, при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы.

Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора.

Но, к сожалению, промышленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп.

Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

Принципиальная схема

Схема частично заимствована из Л.1, вернее, сама идея, сделать нестабилизированный импульсный источник питания по схеме блокинг-генератора на основе трансформатора блока питания телевизора.

Рис. 1. Схема простого импульсного источника питания для шуруповерта, выполнена на транзисторе КТ872.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор на транзисторе VТ1 с трансформатором Т1 на выходе.

Схема на VТ1 - типичный блокинг-генератор. В коллекторной цепи транзистора включена первичная обмотка трансформатора Т1 (1-19). На неё поступает напряжение 300V с выхода выпрямителя на диодах VD1-VD4.

Для запуска блокинг-генератора и обеспечения его стабильной работы на базу транзистора VТ1 поступает напряжение смещения от цепи R1-R2-R3-VD6. Положительная обратная связь, необходимая для работы блокинг-генератора обеспечивается одной из вторичных катушек импульсного трансформатора Т1 (7-11).

Переменное напряжение с неё через конденсатор С4 поступает в базовую цепь транзистора. Диоды VD6 и VD9 служат для формирования импульсов на базе транзистора.

Диод VD5 совместно с цепью C3-R6 ограничивает выбросы положительного напряжения на коллекторе транзистора величиной напряжения питания. Диод VD8 совместно с цепью R5-R4-C2 ограничивает выбросы отрицательного напряжения на коллекторе транзистора VT1. Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18.

Выпрямляется диодом VD7 и сглаживается конденсатором С5. Режим работы выставляется подстроечным резистором R3. Его регулировкой можно не только достигнуть уверенной работы блока питания, но в некоторых пределах отрегулировать выходное напряжение.

Детали и конструкция

Транзистор VT1 должен быть установлен на радиатор. Можно использовать радиатор от блока питания МП-403 или любой другой аналогичный.

Импульсный трансформатор Т1 - готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры некоторое время назад шли на разборку либо вообще выбрасывались. Да и трансформаторы ТПИ-8-1 в продаже присутствуют.

На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6.

Таким образом, можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

На втором рисунке показано как можно сделать выпрямители на вторичных обмотках трансформатора ТПИ-8-1. Эти обмотки можно использовать для отдельных выпрямителей либо включать их последовательно для получения большего напряжения. Кроме того, в некоторых пределах можно регулировать вторичные напряжения, изменяя число витков первичной обмотки 1-19 используя для этого её отводы.

Рис. 2. Схема выпрямителей на вторичных обмотках трансформатора ТПИ-8-1.

Впрочем, этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен, и при попытке его разделить ломается совсем не там, где ожидаешь.

Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А. В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Щеглов В. Н. РК-02-18.

Литература:

1. Компаненко Л. - Простой импульсный преобразователь напряжения для БП телевизора. Р-2008-03.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент, но есть и существенный недостаток, - при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы. Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора. Но, к сожалению, промыш-ленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп. Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

И так, схема источника показана на рисунке в тексте статьи.

Это классический обратноходовый AC-DC преобразователь на основе ШИМ генератора UC3842.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор с трансформатором Т1 на выходе. Первоначально запускающее напряжение поступает на вывод питания 7 ИМС А1 через резистор R1. Включается генератор импульсов микросхемы и выдает импульсы на выводе 6. Они подаются на затвор мощного полевого транзистора VT1 в стоковой цепи которого включена первичная обмотка импульсного трансформатора Т1. Начинается работа трансформатора и появляются на вторичных обмотках вторичные напряжения. Напряжение с обмотки 7-11 выпрямляется диодом VD6 и используется
для питания микросхемы А1, которая перейдя на режим постоянной генерации начинает потреблять ток, который не способен поддерживать пусковой источник питания на резисторе R1. Поэтому при неисправности диода VD6 источник пульсирует, - через R1 конденсатор С4 заряжается до напряжения, необходимого для запуска генератора микросхемы, а когда генератор запускается повышенный ток С4 разряжает, и генерация прекращается. Затем процесс повторяется. При исправности VD6 схема сразу после запуска переходит на питание от обмотки 11 -7 трансформатора Т1.

Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18. Выпрямляется диодом VD7 и сглаживается конденсатором С7.
В отличие от типовой схемы здесь не используется схема защиты выходного ключевого транзистора VT1 от повышенного тока сток-исток. А вход защиты -вывод 3 микросхемы просто соединен с общим минусом питания. Причина данного решения в отсутствии у автора в наличии необходимого низкоомного резистора (все-таки приходится делать из того что есть в наличии). Так что транзистор здесь не защищен от перегрузки по току, что конечно не очень хорошо. Впрочем, схема уже долго работает и без данной защиты. Однако, при желании можно легко сделать защиту, следуя типовой схеме включения ИМС UC3842.

Детали. Импульсный трансформатор Т1 -готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры сейчас частенько идут на разборку либо вообще выбрасываются. Да и трансформаторы ТПИ-8-1 в продаже присутствуют. На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6. Таким образом можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

Впрочем этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен и при попытке его разделить ломается совсем не там, где ожидаешь. Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Транзистор IRF840 можно заменить на IRFBC40 (что в принципе тоже самое), либо на BUZ90, КП707В2.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А.

В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Импульсные трансформаторы питания (ТПИ) применяются в импульсных устройствах электропитания бытовой и офисной аппаратуры с промежуточным преобразованием напряжения питающей сети 127 или 220 В с частотой 50 Гц в импульсы прямоугольной формы с частотой следования до 30 кГц, выполненные в виде модулей или блоков питания: БП, МП-1, МП-2, МП-З, МП-403 и др. Модули имеют одинаковую схему и отличаются только типом используемого импульсного трансформатора и номиналом одного из конденсаторов на выходе фильтра, что определяется особенностями модели, в которой они применяются.
Мощные трансформаторы ТПИ для импульсных источников питания используются для развязки и передачи энергии во вторичные цепи. Накопление энергии в этих трансформаторах нежелательно. При проектировании таких трансформаторов в качестве первого шага необходимо определить размах колебаний магнитной индукции ДВ в установившемся режиме. Трансформатор должен быть рассчитан на работу при возможно большем значении ДВ, что позволяет иметь меньшее число витков в намагничивающей обмотке, увеличить номинальную мощность и уменьшить индуктивность рассеивания На практике значение ДВ может ограничиваться либо индукцией насыщения сердечника B s , либо потерями в магнитопроводе трансформатора.
В большинстве полномостовых, полумостовых и двухполупериодных (балансных) схем со средней точкой трансформатор возбуждается симметрично. При этом значение магнитной индукции изменяется симметрично относительно нуля характеристики намагничивания, что дает возможность иметь теоретическое максимальное значение ДВ, равное удвоенному значению индукции насыщения Bs. В большинстве одно-тактных схем, используемых, например, в однотактных преобразователях, магнитная индукция колеблется полностью в пределах первого квадранта характеристики намагничивания от остаточной индукции Br до индукции насыщения Bs ограничивая теоретический максимум ДВ до значения (Bs — BR). Это означает, что если ДВ не ограничено потерями в магнитопроводе (обычно на частотах ниже 50…100 кГц), для однотактных схем потребуется трансформатор больших размеров при одной и той же выходной мощности.
В питаемых напряжением схемах (которые включают все схемы понижающих стабилизаторов), в соответствии с законом Фарадея, значение ДВ определяется произведением «вольт-секунда» на первичной обмотке. В установившемся режиме произведение «вольт-секунда» на первичной обмотке устанавливается на постоянном уровне. Размах колебаний магнитной индукции, таким образом, также постоянен.
Однако, при обычном методе управления рабочим циклом, который используется большинством микросхем для импульсных стабилизаторов, при запуске и во время резкого увеличения тока нагрузки величина ДВ может достигать удвоенного значения от значения в установившемся режиме Поэтому, чтобы сердечник не насыщался при переходных процессах, установившееся значение ДВ должно быть в два раза меньше теоретического максимума Однако же, если используется микросхема, позволяющая контролировать значение произведения «вольт-секунда» (схемы с отслеживанием возмущения входного напряжения), то максимальное значение произведения «вольт-секунда» фиксируется на уровне, немного превышающем установившийся Это позволяет увеличить значение ДВ и улучшает производительность трансформатора.
Значение индукции насыщения B s для большинства ферритов для сильных магнитных полей типа 2500НМС превышает значение 0.3 Тл. В двухтактных питаемых напряжением схемах величина приращения индукции ДВ обычно ограничивается значением 0,3 Тл. При увеличении частоты возбуждения до 50 кГц потери в магнитопроводе приближаются к потерям в проводах. Увеличение потерь в магнитопроводе на частотах выше 50 кГц приводит к уменьшению значения ДВ.
В однотактных схемах без фиксации произведения «вольт-секунда» для сердечников с (Bs — Br), равным 0,2 Тл, и с учетом переходных процессов установившееся значение ДВ ограничивается на уровне только 0,1 Тл Потери в магнитопроводе на частоте 50 кГц будут незначительными вследствие небольшого размаха колебаний магнитной индукции. В схемах с фиксированным значением произведения «вольт-секунда» величина ДВ может принимать значения до 0,2 Тл, что дает возможность значительно сократить габаритные размеры импульсного трансформатора.
В питаемых током схемах источников питания (повышающие преобразователи и управляемые током понижающие стабилизаторы на связанных катушках индуктивности), значение ДВ определяется произведением «вольт-секунда» на вторичной обмотке при фиксированном выходном напряжении. Так как произведение «вольт-секунда» на выходе не зависит от изменений входного напряжения, то питаемые током схемы могут работать со значением ДВ, близким к теоретическому максимуму (если не учитывать потери в сердечнике), без необходимости ограничения величины произведения «вольт-секунда».
На частотах выше 50 . 100 кГц значение ДВ обычно ограничивается потерями в магнитопроводе.
Вторым шагом при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести правильный выбор типа сердечника, который не будет насыщаться при заданном произведении «вольт-секунда» и обеспечит приемлемые потери в магнитопроводе и обмотках Для этого можно использовать итерационный процесс вычисления, однако приводимые ниже формулы (3 1) и (3 2) позволяют вычислить приближенное значение произведения площадей сердечника S o S c (произведение площади окна сердечника S o и площади поперечного сечения магнитопровода S c) Формула (3 1) применяется, когда значение ДВ ограничено насыщением, а формула (3.2) - когда значение ДВ ограничено потерями в магнитопроводе в сомнительных случаях вычисляются оба значения и используется наибольшее из таблиц справочных данных для различных сердечников выбирается тот тип сердечника, у которого произведение S o S c превышает расчетную величину.

где
Рвх = Рвых/л = (выходная мощность/КПД);
К - коэффициент, учитывающий степень использования окна сердечника, площади первичной обмотки и конструктивный фактор (см. табл 3 1); fp - рабочая частота трансформатора


Для большинства ферритов для сильных магнитных полей коэффициент гистерезиса равен К к = 4 10 5 , а коэффициент потерь на вихревые токи - К вт = 4 10 10 .
В формулах (3.1) и (3.2) предполагается, что обмотки занимают 40% от площади окна сердечника, соотношение между площадями первичной и вторичной обмоток соответствует одинаковой плотности тока в обеих обмотках, равной 420 А/см2, и что суммарные потери в магнитопроводе и обмотках приводят к перепаду температур в зоне нагрева на 30 °С при естественном охлаждении.
В качестве третьего шага при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести расчет обмоток импульсного трансформатора.
В табл. 3.2 приведены унифицированные трансформаторы электропитания типа ТПИ, используемые в телевизионных приемниках.








Намоточные данные трансформаторов типа ТПИ, работающих в импульсных блоках питания стационарных и переносных телевизионных приемниках, приведены в табл 3. 3 Принципиальные электрические схемы трансформаторов ТПИ показаны на рис 3. 1

Окончание табл. 2.2 Номер ш IV IVa IV6 IV6 IV6 V VI Обмотка Наименование Положительной обратной связи Выпрямителей 125, 24, 18 В Выпрямителя 15 В Выпрямителя 12 В Выводы 11 6-12 в том числе: 6-10 10-4 4-8 8-12 14-18 16-20 Число витков 16 74 54 7 5 12 10 10 Марка провода ПЭВТЛ-0,355 ЗЗИМ ПЭВТЛ-0,355 ПЭВТЛ-0,355 Вид намотки Рядовая в три провода Рядовая в два провода, два слоя Рядовая в два провода То же -«- Рядовая в четыре провода То же Сопротивление, Ом 0,2 1,2 0,9 0,2 0,2 0,2 0,2 0,2 Примечание. Трансформаторы ТПИ-3, ТПИ 4 2, ТПИ-4-3, ТПИ-5 выполнены на магнитопроводе М300НМС Ш12Х20Х15 с воздушным зазором 1,3 мм в среднем стержне, трансформатор ТПИ-8-1 - на замкнутом магнитопроводе М300НМС-2 Ш12Х20Х21 с воздушным зазором 1,37 мм в среднем стержне каких-либо электрических переделок, но при этом соединитель Х2 модуля МП-4-6 должен быть сдвинут влево на один контакт (его второй контакт становится как бы первым контактом) или при подключении МП-44-3 взамен МП-3 четвертый контакт соединителя Х2 становится как бы первым контактом.

В табл. 2 2 приведены намоточные данные импульсных трансформаторов питания.

Общий вид, габаритные размеры и разметка печатной платы для установки импульсных трансформаторов питания приведены на рис. 2.16.

Рис. 2.16. Общий вид, габаритные размеры и разметка печатной платы для установки импульсных трансформаторов питания Особенностью ИИП является то, что их нельзя включать без нагрузки. Иными словами, при ремонте МП должен быть обязательно подключен к телевизору или к выходам МП должны быть подключены эквиваленты нагрузок Принципиальная электрическая схема подключения эквивалентов нагрузок приведена на рис. 2 17.

В схеме должны быть установлены следующие эквиваленты нагрузок: R1-резистор сопротивлением 20 Ом ±5%, мощностью не менее 10 Вт; R2--резистор сопротивлением 36 Ом ±5%, мощностью не менее 15 Вт; R3 - резистор сопротивлением 82 Ом ±5%, мощностью не менее 15 Вт; R4 -РПШ 0,6 А =1000 Ом; в радиолюбительской практике вместо реостата часто используется электроосветительная лампа на 220 В мощностью не менее 25 Вт или на 127 В мощностью 40 Вт; Рис. 2.17. Принципиальная электрическая схема подключения эквивалентов нагрузок к модулю питания R5 - резистор сопротивлением 3,6 Ом, мощностью не менее 50 Вт; С1 - конденсатор типа К50-35-25 В, 470 мкФ; С2 - конденсатор типа К50-35-25 В, 1000 мкФ; СЗ-конденсатор типа К50-35-40 В, 470 мкФ.

Токи нагрузок должны составлять: по цепи 12 В 1„о„=0,6 А; по цепи 15 В 1ном=0,4 А (ток минимальный 0,015 А), максимальный 1 А); по цепи 28 В 1„ОМ=0,35 А; по цепи 125... 135 В 1„Ом=0,4 А (ток минимальный 0,3 А, максимальный 0,5 А).

Импульсный источник питания имеет цепи, подключенные непосредственно к напряжению сети. Поэтому при ремонте МП его необходимо подключать к сети через разделительный трансформатор.

Опасная зона на плате МП со стороны печати обозначена штриховкой сплошными линиями.

Заменять неисправные элементы в модуле следует только после выключения телевизора и разрядки оксидных конденсаторов в цепях фильтра сетевого выпрямителя.

Ремонт МП следует начинать со снятия с него защитных крышек, удаления пыли и грязи, визуальной проверки наличия дефектов монтажа и радиоэлементов с внешними повреждениями. 2.6, Возможные неисправности и методы их устранения Принцип построения базовых моделей телевизоров 4УСЦТ является одинаковым, выходные напряжения вторичных импульсных источников питания также практически одинаковы и предназначены для питания одинаковых участков схемы телевизоров. Поэтому в своей основе внешнее проявление неисправностей, их возмож39